Нейросеть определяет возраст и особенности восприятия детей по движению глаз

  • Размер шрифта: Больше Меньше
  • Печатать
  • PDF

Американские ученые научили сверточную нейросеть определять возраст ребенка по анализу движений глаз, когда он смотрит на картинку. Данный метод помог ученым выяснить, на какие именно детали обращают внимание дети. Статья об этом методе была опубликована в Scientific Reports.

В эксперименте под руководством Кирстен Далримпл (Kirsten Dalrymple) из Университета Миннесоты приняли участие 19 полуторагодовалых детей и 22 ребенка в возрасте 2,5 года. Каждому из них в течение трех секунд показывали изображения различных сцен (например, рабочего стола или веранды), а движения глаз регистрировали с помощью носимого айтрекера. Для каждой возрастной группы и каждого изображения ученые составили тепловые карты фиксаций — то есть выделили те места, которые (относительно того, как долго на них смотрели) привлекали внимание участников больше всего.

Далее отобранные области интереса для каждой возрастной группы проанализировали с помощью классификатора, основанного на методе опорных векторов. Всего ученые выделили пять значимых категорий, под которые попадали свойства объектов, на которых фиксировались участники: пиксельные признаки (например, цвет), базовые (например, размер) и семантические (например, игрушки или люди) признаки объектов, а также распределение внимания в центр и на фон изображения. На этих признаках обучили сверточную нейросеть: ее главной целью было определить по примеру распределения внимания на изображении возраст ребенка, который на него смотрит.

Нейросеть смогла правильно определить возраст ребенка по тому, как он смотрит на изображение, в 83 процентах случаев. Среди важных семантических аспектов изображения ученые выделили лицо для детей в возрасте 1,5 года и объекты, к которым прикасаются, — для детей, которым было 2,5 года.
Ученые, таким образом, показали, что машинное обучение вкупе с данными, полученными с айтрекера, — удобный и достоверный инструмент, который позволяет выделять и анализировать аспекты изображений при распределении внимания.

Источник: N+1

в разделе: В мире Просмотров: 153